1 The Category of Graphs (or Pseudographs)

Definition 0.1

A simple graph G is an ordered pair of disjoint sets (N, E) of nodes $x \in N$ and edge $e_{xy} \in E$ such that E is a subset of the set $N^{(2)} = N \times N$ of unordered pairs of N. If the set N is finite then the gaingly G is also finite, as it is usually assumed with N and E being assumed to be finite, unless otherwise stated. The set N is the set of nodes, or vertices, and E is the set of algorithm of the set N is the set of algorithm.

Diagrams in a category can be considered as directed simple graphs in which the edges are replaced by arrows or morphisms that may satisfy commutativity:

$$A \xrightarrow{f} B$$
 $C \xrightarrow{h} D$

and identity conditions (or ETAC axioms).

Definition 0.2

A pseudograph G_P is an ordered triple (V, E, i), where V is a set called the vertex set of G_P , E is a set called the edge set of G, and $i : E \rightarrow 2^V$ is the measure map, such that for every $e_i \in E$, $1 \le (|e_i|) \le 2$.

Remark: A pseudograph can be regarded as a generalization of the except of graph.

Definition 0.3

For any two given pseudographs $G_{Pi}=(V_1,E_1,i_1)$ and $G_{P2}=(V_2,E_2,i_2)$, a graph homomorphism h from G_{P1} to G_{P2} consists of two functions $f:V_1\to V_2$ and $g:E_1\to E_2$, such

$$i_2 \circ g = f^* \circ i_1$$
, (1.1)

where the function $f^*: 2^{V_1} \rightarrow 2^{V_2}$ is defined as $f^*(S) = \{f(s) \mid s \in S\}$.

When G_1 and G_2 are just simple graphs, a graph homomorphism may be defined in terms of a single function $f: V_1 \rightarrow V_2$ surjecting the condition (*)

 $\{v_1, v_2\}$ is an edge of $G_1 \Longrightarrow \{f(v_1), f(v_2)\}$ is an edge of G_2 .

A graph isomorphism h = (f, g) is a graph homomorphism such that both f and g are bijections.